Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38607046

RESUMO

Membrane nanotubes (NTs) are dynamic communication channels connecting spatially separated cells even over long distances and promoting the transport of different cellular cargos. NTs are also involved in the intercellular spread of different pathogens and the deterioration of some neurological disorders. Transport processes via NTs may be controlled by cytoskeletal elements. NTs are frequently observed membrane projections in numerous mammalian cell lines, including various immune cells, but their functional significance in the 'antibody factory' B cells is poorly elucidated. Here, we report that as active channels, NTs of B-lymphoma cells can mediate bidirectional mitochondrial transport, promoted by the cooperation of two different cytoskeletal motor proteins, kinesin along microtubules and myosin VI along actin, and bidirectional transport processes are also supported by the heterogeneous arrangement of the main cytoskeletal filament systems of the NTs. We revealed that despite NTs and axons being different cell extensions, the mitochondrial transport they mediate may exhibit significant similarities. Furthermore, we found that microtubules may improve the stability and lifespan of B-lymphoma-cell NTs, while F-actin strengthens NTs by providing a structural framework for them. Our results may contribute to a better understanding of the regulation of the major cells of humoral immune response to infections.


Assuntos
Estruturas da Membrana Celular , Linfoma , Nanotubos , Animais , Citoesqueleto/metabolismo , Actinas/metabolismo , Nanotubos/química , Mitocôndrias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Linfoma/metabolismo , Mamíferos/metabolismo
2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685917

RESUMO

Membrane nanotubes are cell protrusions that grow to tens of micrometres and functionally connect cells. Actin filaments are semi-flexible polymers, and their polymerisation provides force for the formation and growth of membrane nanotubes. The molecular bases for the provision of appropriate force through such long distances are not yet clear. Actin filament bundles are likely involved in these processes; however, even actin bundles weaken when growing over long distances, and there must be a mechanism for their regeneration along the nanotubes. We investigated the possibility of the formation of periodic molecular relay stations along membrane nanotubes by describing the interactions of actin with full-length IRSp53 protein and its N-terminal I-BAR domain. We concluded that I-BAR is involved in the early phase of the formation of cell projections, while IRSp53 is also important for the elongation of protrusions. Considering that IRSp53 binds to the membrane along the nanotubes and nucleates actin polymerisation, we propose that, in membrane nanotubes, IRSp53 establishes molecular relay stations for actin polymerisation and, as a result, supports the generation of force required for the growth of nanotubes.


Assuntos
Actinas , Nanotubos , Citoesqueleto de Actina , Estruturas da Membrana Celular , Microvilosidades , Animais , Camundongos , Chlorocebus aethiops/metabolismo
3.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628608

RESUMO

Proteoglycan macromolecules play key roles in several physiological processes (e.g., adhesion, proliferation, migration, invasion, angiogenesis, and apoptosis), all of which are important for placentation and healthy pregnancy. However, their precise roles in human reproduction have not been clarified. To fill this gap, herein, we provide an overview of the proteoglycans' expression and role in the placenta, in trophoblast development, and in pregnancy complications (pre-eclampsia, fetal growth restriction), highlighting one of the most important members of this family, syndecan-1 (SDC1). Microarray data analysis showed that of 34 placentally expressed proteoglycans, SDC1 production is markedly the highest in the placenta and that SDC1 is the most upregulated gene during trophoblast differentiation into the syncytiotrophoblast. Furthermore, placental transcriptomic data identified dysregulated proteoglycan genes in pre-eclampsia and in fetal growth restriction, including SDC1, which is supported by the lower concentration of syndecan-1 in maternal blood in these syndromes. Overall, our clinical and in vitro studies, data analyses, and literature search pointed out that proteoglycans, as important components of the placenta, may regulate various stages of placental development and participate in the maintenance of a healthy pregnancy. Moreover, syndecan-1 may serve as a useful marker of syncytialization and a prognostic marker of adverse pregnancy outcomes. Further studies are warranted to explore the role of proteoglycans in healthy and complicated pregnancies, which may help in diagnostic or therapeutic developments.


Assuntos
Pré-Eclâmpsia , Complicações na Gravidez , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Humanos , Placenta/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Sindecana-1/genética , Sindecana-1/metabolismo
4.
Front Immunol ; 13: 1088024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36643922

RESUMO

Introduction: Galectins are master regulators of maternal immune responses and placentation in pregnancy. Galectin-13 (gal-13) and galectin-14 (gal-14) are expressed solely by the placenta and contribute to maternal-fetal immune tolerance by inducing the apoptosis of activated T lymphocytes and the polarization of neutrophils toward an immune-regulatory phenotype.Furthermore, their decreased placental expression is associated with pregnancy complications, such as preeclampsia and miscarriage. Yet, our knowledge of the immunoregulatory role of placental galectins is incomplete. Methods: This study aimed to investigate the effects of recombinant gal-13 and gal-14 on cell viability, apoptosis, and cytokine production of peripheral blood mononuclear cells (PBMCs) and the signaling pathways involved. Results: Herein, we show that gal-13 and gal-14 bind to the surface of non-activated PBMCs (monocytes, natural killer cells, B cells, and T cells) and increase their viability while decreasing the rate of their apoptosis without promoting cell proliferation. We also demonstrate that gal-13 and gal-14 induce the production of interleukin (IL)-8, IL-10, and interferon-gamma cytokines in a concentration-dependent manner in PBMCs. The parallel activation of Erk1/2, p38, and NF-ĸB signaling evidenced by kinase phosphorylation in PBMCs suggests the involvement of these pathways in the regulation of the galectin-affected immune cell functions. Discussion: These findings provide further evidence on how placenta-specific galectins assist in the establishment and maintenance of a proper immune environment during a healthy pregnancy.


Assuntos
Imunidade Adaptativa , Galectinas , Imunidade Inata , Leucócitos Mononucleares , Placenta , Gravidez , Feminino , Humanos , Gravidez/imunologia , Citocinas/imunologia , Galectinas/imunologia , Imunidade , Leucócitos Mononucleares/imunologia , Monócitos/imunologia , Placenta/imunologia , Proteínas Recombinantes
5.
Biol Futur ; 72(1): 25-36, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34554502

RESUMO

Nanotubular connections between mammalian cell types came into the focus only two decades ago, when "live cell super-resolution imaging" was introduced. Observations of these long-time overlooked structures led to understanding mechanisms of their growth/withdrawal and exploring some key genetic and signaling factors behind their formation. Unbelievable level of multiple supportive collaboration between tumor cells undergoing cytotoxic chemotherapy, cross-feeding" between independent bacterial strains or "cross-dressing" collaboration of immune cells promoting cellular immune response, all via nanotubes, have been explored recently. Key factors and "calling signals" determining the spatial directionality of their growth and their overall in vivo significance, however, still remained debated. Interestingly, prokaryotes, including even ancient archaebacteria, also seem to use such NT connections for intercellular communication. Herein, we will give a brief overview of current knowledge of membrane nanotubes and depict a simple model about their possible "historical role".


Assuntos
Comunicação Celular/fisiologia , Estruturas da Membrana Celular/fisiologia , Sistema Imunitário/fisiologia , Nanotubos/química , Animais , Transporte Biológico/fisiologia , Células Cultivadas , Humanos , Sistema Imunitário/citologia , Modelos Biológicos , Nanotubos/ultraestrutura , Células Procarióticas/fisiologia
6.
Biol Futur ; 72(1): 1, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34554504
7.
Cancers (Basel) ; 13(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34298674

RESUMO

Recently, it has become evident that mitochondrial transfer (MT) plays a crucial role in the acquisition of cancer drug resistance in many hematologic malignancies; however, for multiple myeloma, there is a need to generate novel data to better understand this mechanism. Here, we show that primary myeloma cells (MMs) respond to an increasing concentration of chemotherapeutic drugs with an increase in the acquisition of mitochondria from autologous bone marrow stromal cells (BM-MSCs), whereupon survival and adenosine triphosphate levels of MMs increase, while the mitochondrial superoxide levels decrease in MMs. These changes are proportional to the amount of incorporated BM-MSC-derived mitochondria and to the concentration of the used drug, but seem independent from the type and mechanism of action of chemotherapeutics. In parallel, BM-MSCs also incorporate an increasing amount of MM cell-derived mitochondria accompanied by an elevation of superoxide levels. Using the therapeutic antibodies Daratumumab, Isatuximab, or Elotuzumab, no similar effect was observed regarding the MT. Our research shows that MT occurs via tunneling nanotubes and partial cell fusion with extreme increases under the influence of chemotherapeutic drugs, but its inhibition is limited. However, the supportive effect of stromal cells can be effectively avoided by influencing the metabolism of myeloma cells with the concomitant use of chemotherapeutic agents and an inhibitor of oxidative phosphorylation.

8.
Front Immunol ; 12: 620427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868238

RESUMO

The positive coreceptor function of complement receptor type 2 [CR2 (CD21)] on B cells is generally accepted, although its role in the enhancement of antibody production had only been proven in mice. The importance of this phenomenon prompted reinvestigation of the functional consequences of coclustering CD21 and the B cell receptor (BCR) on primary human cells. We found that, at non-stimulatory concentrations of anti-IgG/A/M, coclustering the BCR and CR2 enhanced the Ca2+ response, while activation marker expression, cytokine production, proliferation, and antibody production were all inhibited upon the coengagement of CR2 and BCR on human B cells. Thus, the "textbook dogma" claiming that C3d acts as an adjuvant to enhance humoral immunity is relevant only to mice and not to humans.


Assuntos
Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Complemento 3d/metabolismo , Formação de Anticorpos/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Biomarcadores , Células Cultivadas , Citocinas/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Ativação Linfocitária/genética , Ligação Proteica
9.
Int J Mol Sci ; 21(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796700

RESUMO

Zinc finger protein 554 (ZNF554), a member of the Krüppel-associated box domain zinc finger protein subfamily, is predominantly expressed in the brain and placenta in humans. Recently, we unveiled that ZNF554 regulates trophoblast invasion during placentation and its decreased expression leads to the early pathogenesis of preeclampsia. Since ZNF proteins are immensely implicated in the development of several tumors including malignant tumors of the brain, here we explored the pathological role of ZNF554 in gliomas. We examined the expression of ZNF554 at mRNA and protein levels in normal brain and gliomas, and then we searched for genome-wide transcriptomic changes in U87 glioblastoma cells transiently overexpressing ZNF554. Immunohistochemistry of brain tissues in our cohort (n = 62) and analysis of large TCGA RNA-Seq data (n = 687) of control, oligodendroglioma, and astrocytoma tissues both revealed decreased expression of ZNF554 towards higher glioma grades. Furthermore, low ZNF554 expression was associated with shorter survival of grade III and IV astrocytoma patients. Overexpression of ZNF554 in U87 cells resulted in differential expression, mostly downregulation of 899 genes. The "PI3K-Akt signaling pathway", known to be activated during glioma development, was the most impacted among 116 dysregulated pathways. Most affected pathways were cancer-related and/or immune-related. Congruently, cell proliferation was decreased and cell cycle was arrested in ZNF554-transfected glioma cells. These data collectively suggest that ZNF554 is a potential tumor suppressor and its decreased expression may lead to the loss of oncogene suppression, activation of tumor pathways, and shorter survival of patients with malignant glioma.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Fatores de Transcrição Kruppel-Like/genética , Transdução de Sinais , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Genoma Humano , Glioma/patologia , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Adulto Jovem
10.
Int J Mol Sci ; 20(20)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658584

RESUMO

Gene expression studies of molar pregnancy have been limited to a small number of candidate loci. We analyzed high-dimensional RNA and protein data to characterize molecular features of complete hydatidiform moles (CHMs) and corresponding pathologic pathways. CHMs and first trimester placentas were collected, histopathologically examined, then flash-frozen or paraffin-embedded. Frozen CHMs and control placentas were subjected to RNA-Seq, with resulting data and published placental RNA-Seq data subjected to bioinformatics analyses. Paraffin-embedded tissues from CHMs and control placentas were used for tissue microarray (TMA) construction, immunohistochemistry, and immunoscoring for galectin-14. Of the 14,022 protein-coding genes expressed in all samples, 3,729 were differentially expressed (DE) in CHMs, of which 72% were up-regulated. DE genes were enriched in placenta-specific genes (OR = 1.88, p = 0.0001), of which 79% were down-regulated, imprinted genes (OR = 2.38, p = 1.54 × 10-6), and immune genes (OR = 1.82, p = 7.34 × 10-18), of which 73% were up-regulated. DNA methylation-related enzymes and histone demethylases were dysregulated. "Cytokine-cytokine receptor interaction" was the most impacted of 38 dysregulated pathways, among which 17 were immune-related pathways. TMA-based immunoscoring validated the lower expression of galectin-14 in CHM. In conclusion, placental functions were down-regulated, imprinted gene expression was altered, and immune pathways were activated, indicating complex dysregulation of placental developmental and immune processes in CHMs.


Assuntos
Mola Hidatiforme/genética , Mola Hidatiforme/imunologia , Placenta/metabolismo , Gravidez/imunologia , Coriocarcinoma , Citocinas , Metilação de DNA , Regulação para Baixo , Feminino , Expressão Gênica , Doença Trofoblástica Gestacional , Humanos , Imuno-Histoquímica , Primeiro Trimestre da Gravidez , Biologia de Sistemas , Regulação para Cima
11.
Front Immunol ; 10: 1240, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275299

RESUMO

Galectins are potent immunomodulators that regulate maternal immune responses in pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which emerged in anthropoid primates. These galectins are expressed only by the placenta and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted maternal immune balance in pregnancy. The placental expression of Gal-13 and Gal-14 is decreased in preeclampsia, a life-threatening obstetrical syndrome partly attributed to maternal anti-fetal rejection. This study is aimed at revealing the effects of Gal-13 and Gal-14 on T cell functions and comparing the expression of these galectins in placentas from healthy pregnancies and miscarriages. First-trimester placentas were collected from miscarriages and elective termination of pregnancies, tissue microarrays were constructed, and then the expression of Gal-13 and Gal-14 was analyzed by immunohistochemistry and immunoscoring. Recombinant Gal-13 and Gal-14 were expressed and purified, and their effects were investigated on primary peripheral blood T cells. The binding of Gal-13 and Gal-14 to T cells and the effects of these galectins on apoptosis, activation marker (CD25, CD71, CD95, HLA-DR) expression and cytokine (IL-1ß, IL-6, IL-8, IL-10, IFNγ) production of T cells were examined by flow cytometry. Gal-13 and Gal-14 are primarily expressed by the syncytiotrophoblast at the maternal-fetal interface in the first trimester, and their placental expression is decreased in miscarriages compared to first-trimester controls. Recombinant Gal-13 and Gal-14 bind to T cells in a population- and activation-dependent manner. Gal-13 and Gal-14 induce apoptosis of Th and Tc cell populations, regardless of their activation status. Out of the investigated activation markers, Gal-14 decreases the cell surface expression of CD71, Gal-13 increases the expression of CD25, and both galectins increase the expression of CD95 on T cells. Non-activated T cells produce larger amounts of IL-8 in the presence of Gal-13 or Gal-14. In conclusion, these results show that Gal-13 and Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface during early pregnancy, and their reduced expression is related to miscarriages.


Assuntos
Imunidade Adaptativa/imunologia , Galectinas/imunologia , Galectinas/metabolismo , Placenta/imunologia , Placenta/metabolismo , Aborto Espontâneo/imunologia , Adulto , Apoptose/imunologia , Biomarcadores/metabolismo , Citocinas/imunologia , Feminino , Humanos , Imuno-Histoquímica/métodos , Gravidez , Primeiro Trimestre da Gravidez/imunologia , Linfócitos T/imunologia , Adulto Jovem
12.
Immunol Lett ; 212: 14-21, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31216428

RESUMO

IL-10 is a suppressive cytokine that has been implicated in the pathophysiology of autoimmune disorders and can be produced by different cell types such as regulatory B-cells. Our previous work showed that under inflammatory condition MZ B-cells differentiated into IL-10 producing cells and contributed to the downregulation of collagen-induced arthritis, while follicular B-cells failed to do so. Based on these observations, we aimed to investigate how inflammatory signals mediated through the BCR, TLR9 and IFN-γ receptors trigger IL-10 production in MZ B-cells but leave FO B-cells unresponsive. We particularly focused on the CREB transcription factor as it is involved in all three signalling cascades and analysed its contribution to IL-10 production. Our results demonstrate that the IL-10 production of MZ B-cells induced by the BCR, TLR9 and IFN-γ receptors is mediated by CREB. We showed that the activation of CREB is prolonged in MZ B-cells while the transcription factor only transiently phosphorylated in FO B-cells. The sustained phosphorylation of CREB is clearly associated with its prolonged binding to molecular partner CBP, whereas inhibition of their association decreased IL-10 production. We assume that sustained activation of CREB is required for IL-10 production by B-cells under inflammatory conditions.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica/imunologia , Interleucina-10/genética , Animais , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-10/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos DBA , Fosforilação/imunologia , Cultura Primária de Células , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Baço/citologia , Baço/imunologia , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo
13.
Sci Rep ; 9(1): 4, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626909

RESUMO

The complex effects of estradiol on non-reproductive tissues/cells, including lymphoid tissues and immunocytes, have increasingly been explored. However, the role of sex hormone binding globulin (SHBG) in the regulation of these genomic and non-genomic actions of estradiol is controversial. Moreover, the expression of SHBG and its internalization by potential receptors, as well as the influence of SHBG on estradiol uptake and signaling in lymphocytes has remained unexplored. Here, we found that human and mouse T cells expressed SHBG intrinsically. In addition, B lymphoid cell lines as well as both primary B and T lymphocytes bound and internalized external SHBG, and the amount of plasma membrane-bound SHBG decreased in B cells of pregnant compared to non-pregnant women. As potential mediators of this process, SHBG receptor candidates expressed by lymphocytes were identified in silico, including estrogen receptor (ER) alpha. Furthermore, cell surface-bound SHBG was detected in close proximity to membrane ERs while highly colocalizing with lipid rafts. The SHBG-membrane ER interaction was found functional since SHBG promoted estradiol uptake by lymphocytes and subsequently influenced Erk1/2 phosphorylation. In conclusion, the SHBG-SHBG receptor-membrane ER complex participates in the rapid estradiol signaling in lymphocytes, and this pathway may be altered in B cells in pregnant women.


Assuntos
Linfócitos B/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Globulina de Ligação a Hormônio Sexual/fisiologia , Linfócitos T/metabolismo , Animais , Linfócitos B/citologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Linfócitos T/citologia
14.
Methods Appl Fluoresc ; 6(4): 045005, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30039805

RESUMO

Membrane nanotubes are transient long-distance connections between cells that can facilitate intercellular communication. These tethers can form spontaneously between many cell types, including cells of the immune and nervous systems. Traffic of viral proteins, vesicles, calcium ions, mRNA, miRNA, mitochondria, lysosomes and membrane proteins/raft domains have all been reported so far via the open ended tunneling nanotubes (TNTs). Recently we reported on existence of plasma membrane derived GM1/GM3 ganglioside enriched microvesicles and costimulatory proteins in nanotubes connecting B lymphocytes, the way they are formed and transported across TNTs, however, still remained unclear. Here, using live cell confocal and Structured Illumination (SR-SIM) superresolution imaging, we show that B cells respond to bacterial (Cholera) toxin challenge by their subsequent internalization followed by rapid formation of intracellular microvesicles (MVs). These MVs are then transported between adjacent B cells via nanotubes. Selective transport-inhibition analysis of two abundant motor proteins in these cell types demonstrated that actin-based non-muscle myosin 2A dominantly mediates intercellular MV-transport via TNTs, in contrast to the microtubule-based dynein, as shown by the unchanged transport after inhibition of the latter. As suggested by SR-SIM images of GFP-CD86 transfected macrophages, these costimulatory molecules may be transferred by unusually shaped MVs through thick TNTs connecting macrophages. In contrast, in B cell cultures the same GFP-CD86 is dominantly transported along the membrane wall of TNTs. Such intercellular molecule-exchange can consequently improve the efficiency of antigen-dependent T cell activation, especially in macrophages with weak costimulator expression and T cell activation capacity. Such improved T cell activating potential of these two cell types may result in a more efficient cellular immune response and formation of immunological memory. The results also highlight the power of superresolution microscopy to uncover so far hidden structural details of biological processes, such as microvesicle formation and transport.


Assuntos
Transporte Biológico/fisiologia , Microscopia/métodos , Nanotubos/química , Humanos
15.
Proc Natl Acad Sci U S A ; 115(24): 6303-6308, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29844190

RESUMO

C1q, a member of the immune complement cascade, is implicated in the selective pruning of synapses by microglial phagocytosis. C1q-mediated synapse elimination has been shown to occur during brain development, while increased activation and complement-dependent synapse loss is observed in neurodegenerative diseases. However, the molecular mechanisms underlying C1q-controlled synaptic pruning are mostly unknown. This study addresses distortions in the synaptic proteome leading to C1q-tagged synapses. Our data demonstrated the preferential localization of C1q to the presynapse. Proteomic investigation and pathway analysis of C1q-tagged synaptosomes revealed the presence of apoptotic-like processes in C1q-tagged synapses, which was confirmed experimentally with apoptosis markers. Moreover, the induction of synaptic apoptotic-like mechanisms in a model of sensory deprivation-induced synaptic depression led to elevated C1q levels. Our results unveiled that C1q label-based synaptic pruning is triggered by and directly linked to apoptotic-like processes in the synaptic compartment.


Assuntos
Apoptose/fisiologia , Complemento C1q/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Idoso , Ativação do Complemento/fisiologia , Humanos , Masculino , Microglia/metabolismo , Microglia/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Fagocitose/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Sinapses/metabolismo
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 991-1000, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28645851

RESUMO

Nanotubes (NTs) are thin, long membranous structures forming novel, yet poorly known communication pathways between various cell types. Key mechanisms controlling their growth still remained poorly understood. Since NT-forming capacity of immature and mature B cells was found largely different, we investigated how lipid composition and molecular order of the membrane affect NT-formation. Screening B cell lines with various differentiation stages revealed that NT-growth linearly correlates with membrane ganglioside levels, while it shows maximum as a function of cholesterol level. NT-growth of B lymphocytes is promoted by raftophilic phosphatidylcholine and sphingomyelin species, various glycosphingolipids, and docosahexaenoic acid-containing inner leaflet lipids, through supporting membrane curvature, as demonstrated by comparative lipidomic analysis of mature versus immature B cell membranes. Targeted modification of membrane cholesterol and sphingolipid levels altered NT-forming capacity confirming these findings, and also highlighted that the actual lipid raft number may control NT-growth via defining the number of membrane-F-actin coupling sites. Atomic force microscopic mechano-manipulation experiments further proved that mechanical properties (elasticity or bending stiffness) of B cell NTs also depend on the actual membrane lipid composition. Data presented here highlight importance of the lipid side in controlling intercellular, nanotubular, regulatory communications in the immune system.


Assuntos
Linfócitos B/metabolismo , Diferenciação Celular/fisiologia , Microdomínios da Membrana/fisiologia , Esfingolipídeos/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Gangliosídeos/metabolismo , Glicoesfingolipídeos/metabolismo , Fluidez de Membrana/fisiologia , Microdomínios da Membrana/metabolismo , Camundongos , Nanotubos , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo
17.
Am J Cancer Res ; 6(9): 2041-2053, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725909

RESUMO

Adrenocortical cancer (ACC) is a rare, but agressive malignancy with poor prognosis. Histopathological diagnosis is challenging and pharmacological options for treatment are limited. By the comparative reanalysis of the transcriptional malignancy signature with the cell cycle dependent transcriptional program of ACC, we aimed to identify novel biomarkers which may be used in the histopathological diagnosis and for the prediction of therapeutical response of ACC. Comparative reanalysis of publicly available microarray datasets included three earlier studies comparing transcriptional differences between ACC and benign adrenocortical adenoma (ACA) and one study presenting the cell cycle dependent gene expressional program of human ACC cell line NCI-H295R. Immunohistochemical analysis was performed on ACC samples. In vitro effects of antineoplastic drugs including gemcitabine, mitotane and 9-cis-retinoic acid alone and in combination were tested in the NCI-H295R adrenocortical cell line. Upon the comparative reanalysis, ribonucleotide reductase subunit 2 (RRM2), responsible for the ribonucleotide dezoxyribonucleotide conversion during the S phase of the cell cycle has been validated as cell cycle dependently expressed. Moreover, its expression was associated with the malignancy signature, as well. Immunohistochemical analysis of RRM2 revealed a strong correlation with Ki67 index in ACC. Among the antiproliferative effects of the investigated compounds, gemcitabine showed a strong inhibition of proliferation and an increase of apoptotic events. Additionally, RRM2 has been upregulated upon gemcitabine treatment. Upon our results, RRM2 might be used as a proliferation marker in ACC. RRM2 upregulation upon gemcitabine treatment might contribute to an emerging chemoresistance against gemcitabine, which is in line with its limited therapeutical efficacy in ACC, and which should be overcome for successful clinical applications.

18.
BMC Genomics ; 17: 412, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27234232

RESUMO

BACKGROUND: Previously, drug-based synchronization procedures were used for characterizing the cell cycle dependent transcriptional program. However, these synchronization methods result in growth imbalance and alteration of the cell cycle machinery. DNA content-based fluorescence activated cell sorting (FACS) is able to sort the different cell cycle phases without perturbing the cell cycle. MiRNAs are key transcriptional regulators of the cell cycle, however, their expression dynamics during cell cycle has not been explored. METHODS: Following an optimized FACS, a complex initiative of high throughput platforms (microarray, Taqman Low Density Array, small RNA sequencing) were performed to study gene and miRNA expression profiles of cell cycle sorted human cells originating from different tissues. Validation of high throughput data was performed using quantitative real time PCR. Protein expression was detected by Western blot. Complex statistics and pathway analysis were also applied. RESULTS: Beyond confirming the previously described cell cycle transcriptional program, cell cycle dependently expressed genes showed a higher expression independently from the cell cycle phase and a lower amplitude of dynamic changes in cancer cells as compared to untransformed fibroblasts. Contrary to mRNA changes, miRNA expression was stable throughout the cell cycle. CONCLUSIONS: Cell cycle sorting is a synchronization-free method for the proper analysis of cell cycle dynamics. Altered dynamic expression of universal cell cycle genes in cancer cells reflects the transformed cell cycle machinery. Stable miRNA expression during cell cycle progression may suggest that dynamical miRNA-dependent regulation may be of less importance in short term regulations during the cell cycle.


Assuntos
Ciclo Celular/genética , Citometria de Fluxo , Regulação da Expressão Gênica , MicroRNAs/química , MicroRNAs/genética , Análise de Sequência de RNA , Linhagem Celular Transformada , Linhagem Celular Tumoral , Análise por Conglomerados , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Especificidade de Órgãos/genética , Transcriptoma
19.
Cell Mol Life Sci ; 73(23): 4531-4545, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27125884

RESUMO

Tunneling nanotubes (TNTs) are long intercellular connecting structures providing a special transport route between two neighboring cells. To date TNTs have been reported in different cell types including immune cells such as T-, NK, dendritic cells, or macrophages. Here we report that mature, but not immature, B cells spontaneously form extensive TNT networks under conditions resembling the physiological environment. Live-cell fluorescence, structured illumination, and atomic force microscopic imaging provide new insights into the structure and dynamics of B cell TNTs. Importantly, the selective interaction of cell surface integrins with fibronectin or laminin extracellular matrix proteins proved to be essential for initiating TNT growth in B cells. These TNTs display diversity in length and thickness and contain not only F-actin, but their majority also contain microtubules, which were found, however, not essential for TNT formation. Furthermore, we demonstrate that Ca2+-dependent cortical actin dynamics exert a fundamental control over TNT growth-retraction equilibrium, suggesting that actin filaments form the TNT skeleton. Non-muscle myosin 2 motor activity was shown to provide a negative control limiting the uncontrolled outgrowth of membranous protrusions. Moreover, we also show that spontaneous growth of TNTs is either reduced or increased by B cell receptor- or LPS-mediated activation signals, respectively, thus supporting the critical role of cytoplasmic Ca2+ in regulation of TNT formation. Finally, we observed transport of various GM1/GM3+ vesicles, lysosomes, and mitochondria inside TNTs, as well as intercellular exchange of MHC-II and B7-2 (CD86) molecules which may represent novel pathways of intercellular communication and immunoregulation.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Nanotubos/química , Citoesqueleto de Actina/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Proliferação de Células , Microambiente Celular , Citometria de Fluxo , Humanos , Camundongos , Miosinas/metabolismo
20.
PLoS One ; 10(3): e0121184, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798862

RESUMO

In recent years the study of extracellular vesicles has gathered much scientific and clinical interest. As the field is expanding, it is becoming clear that better methods for characterization and quantification of extracellular vesicles as well as better standards to compare studies are warranted. The goal of the present work was to find improved parameters to characterize extracellular vesicle preparations. Here we introduce a simple 96 well plate-based total lipid assay for determination of lipid content and protein to lipid ratios of extracellular vesicle preparations from various myeloid and lymphoid cell lines as well as blood plasma. These preparations included apoptotic bodies, microvesicles/microparticles, and exosomes isolated by size-based fractionation. We also investigated lipid bilayer order of extracellular vesicle subpopulations using Di-4-ANEPPDHQ lipid probe, and lipid composition using affinity reagents to clustered cholesterol (monoclonal anti-cholesterol antibody) and ganglioside GM1 (cholera toxin subunit B). We have consistently found different protein to lipid ratios characteristic for the investigated extracellular vesicle subpopulations which were substantially altered in the case of vesicular damage or protein contamination. Spectral ratiometric imaging and flow cytometric analysis also revealed marked differences between the various vesicle populations in their lipid order and their clustered membrane cholesterol and GM1 content. Our study introduces for the first time a simple and readily available lipid assay to complement the widely used protein assays in order to better characterize extracellular vesicle preparations. Besides differentiating extracellular vesicle subpopulations, the novel parameters introduced in this work (protein to lipid ratio, lipid bilayer order, and lipid composition), may prove useful for quality control of extracellular vesicle related basic and clinical studies.


Assuntos
Colesterol/análise , Vesículas Extracelulares/química , Gangliosídeo G(M1)/análise , Proteínas/análise , Animais , Humanos , Células Jurkat , Bicamadas Lipídicas/química , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...